1 Introduction: Initial Definitions and Some
Example PDEs

In this course we only deal with problems involving a single partial differ-
ential equation (abbreviated pde or PDE in the Notes). A scalar pde is an
equation involving an unknown function of two or more independent vari-
ables, along with at least two different types of partial derivatives of the
unknown function. For example,
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As ordinary differential equations is an extension of (single-variable) inte-
gral calculus, partial differential equations can be considered at this level as
an extension of multivariable calculus (and ordinary differential equations).
Thus, it deals with various operators from calculus (see Appendix B). This
includes
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where ;J, k are the unit normal vectors in the x,y, z directions, respectively.
(This is expressed here in cartesian coordinates, but in the course we will,
briefly, look at equations in polar, cylinder, and spherical coordinate sys-
tems.)

If F = (fi1, fo, f3) is a vector function on R3 to R? (i.e. a vector field), we
also have the divergent and curl operators:
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This allows us to form the important Laplace operator
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which gives us an equation we will study later in the course, namely Laplace’s
equation:
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One way of interpreting u satisfying, say, the two-dimensional version of this
equation (so 9%*u/dz? = 0) is to think of this equation being defined on a
bounded domain 2 C R?, with u = f(z,y) on the boundary of €. Then you
might think of u(z,y) as the height of an elastic membrane above or below
the plane at (z,y) € Q.
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1.1 Some Other Important Examples

From a historical perspective one of the first equations to be developed and
analyzed was the equation for the vibration of a string in a plane, namely
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Here u(z,t) represents the displacement of the string (centerline) from the
horizontal at location x, at time . The constant c is a wave speed parameter.
The multi-dimensional version of this equation for surfaces is
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One of the most important systems of equations ever developed are Maxwell’s
equations linking electric and magnetic fields. Let E = (E1, Es, E3) be the
electric field vector function (vector field), and H = (H,, Ha, Hs) be the mag-
netic vector field. There are a number of parameters in this theory, all of
which we will treat as constants in my representation here, for convenience.
These are ;1 (magnetic permeability), p (charge density), e (dielectric con-
stant), o (conductivity). There is also the vector field .J, the current density.
Then Maxwell’s equations can be written in the form
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V-E=p/e (7)

Equation (6) is sometimes referred to as Faraday’s law, and equation (7) is
called Coulomb’s law. In electrostatics the quantities are time-independent
(We will refer to this in other contexts as the steady state situation), so time
derivatives are set to zero. Hence, from (4), Vx E = 0 (E is an “irrotational”
field). In this case, from calculus, there exists an electrical potential ¢ such

that E = —V¢. Thus, from (7), div E = —div (grad ¢) = p/e; that is,
Vi = —p/e. (8)

This is a non-homogeneous version of (1) because of the non-zero right-hand
side not involving the dependent variable ¢; non-homogeneous Laplace’s
equation is actually referred to as Poisson’s equation. If the density p = 0,
the Laplace’s equation is recovered for ¢. We will solve and study properties
of the solutions to both Laplace’s equation and Poisson’s equation later in
the course. By the way, if J = 0, then there exists a magnetic potential
such that H = —V1). Hence, from (5),

V) =0.

Definition: Any function that satisfies Laplace’s equation in some (spatial)
domain 2 is called a harmonic function in €.

In electrodynamics we maintain time dependent changes in the fields.
Taking the curl of (4), and utilizing (6), gives
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There is a vector identity given by

curl(curl F) = grad(div F) — div grad F,
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Let 2 :=1/epu, v :=o0/e, F = —u—iQ Vp, then
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That is, each component of E (and it turns out this holds for each component
of H also) satisfies an equation of the form
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If p = constant, then this equation reduces to
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A one-dimensional version of it is a version of the telegrapher’s equation.
We will discuss this equation when we discuss dissipation and dispersion
ideas. Note that if the conductivity o = 0, then (9) becomes
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This is the standard wave equation given in (3). If you consider for a mo-
ment that the left-hand side of equation (9) is associated with a ‘damped
spring’, and the right-hand side of the equation deals with the spring force,
then you should know from your ODE class that the v term acts to dampen
the spring motion. Put another way, in comparing (3) and (9), the v term
in (9) acts to dissipate energy in the moving string or surface described by
u. Hence, we refer to (9) as a damped wave equation.

Remark: An active research topic these days is how to design a cloak, that
is, designing a way of not only concealing an object, or person, from view
(visible light, electromagnetic rays, etc.), but doing it in such a way that
observers do not know an object is being hidden. Think of Harry Potter’s
way of creating an invisible cloak to escape notice of Draco Malfoy and other
Death Eaters, or the ability of Romulan ships to cloak in the “Star Trek”
TV series (and movies). There is a nice article on this topic using Laplace’s
equation instead of Maxwell’s equations by K. Bryan and T. Leise (SIAM
Review, vol. 52, 2010, pp 359-377).



Another class of problems we will discuss extensively involve, as a proto-
typical case, the heat equation
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Here D is a diffusivity constant (property of the material being heated),
and (7, t) is the thermal energy at location &, at time ¢. In the case of one
dimension, with specified distributed internal ‘heat sources’ f, (10) becomes
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This is a model for a long, thin rod where with lateral sides being completely
insulated, and each cross-section of the rod being isothermal, so variation
in temperature only depends on location x along the rod. There is also the
assumption that the rod has uniform material properties so that D is a con-
stant.

Remark: 1 will discuss cases where the temperature of the rod reaches a
steady state temperature (on some spatial domain); this implies we are
considering the case of the left-hand side of the equation being set to zero,
and the source function f being independent of ¢, so
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This is another case of using ODE methods to discuss a class of solutions for
the heat equation. Note that this is a one-dimensional Poisson equation.
Here are a few more examples to consider:

Pricing of financial derivative contracts: Much discussion in the press
about the need for government oversight of financial institutions concerns the
regulation of option contracts (financial derivatives). The simplest of these
is a call or put option on an underlying asset (e.g. a stock, a currency, a
piece of real estate, or even another financial derivative). Such an option is a
contract giving the holder the right, but not the obligation, to buy (or sell)
the underlying asset, at some specified future time, when the value of the
underlying asset reaches, or exceeds, a value called the exercise price. For a
given time ¢ during the life of the contract, and for a given value, S, of the



asset, let V' = V/(S,t) be the value of the contract. In Black-Scholes theory,
V' is the solution to the pde
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where r is the “risk-free” interest rate, and o is the “volatility” of the asset
(standard deviation of the stochastic underlying asset price). This is the
starting point for a large number of valuation problems in financial engineer-
ing. It turns out (11) can be reduced down to solving the heat equation
through a certain transformation. (This observation is extremely important
because it means that security traders could use, and misuse, a formula for
the solution V'(S,t) without knowing anything about pdes; hence, the no-
tional value of traded options is in the tens of trillions of dollars now.)

Evolution of a quantum state: In quantum mechanics the wave function
¥ (x,t) that characterizes the one-dimensional motion of a particle under the
influence of the potential V' (z) satisfies the Schrédinger equation

where h is (reduced) Planck constant, m is the mass of the particle, and

i? = —1. We will deal with equations in this course that only have real
coefficients.

Brittle fracture: In modeling cracks in perfectly elastic solids, the sim-
plest case is to consider the displacement field @ = (0,0, w(z,y)), where w
is harmonic. For uniform shearing at large distances (|y| — o0), w — Ty,
0 < 7 = constant; if we let w = Ty~+u(x,y), then a model here is for V?u = 0,
fory >0, u=0o0ony=0,|x|] > ¢ and du/dy = —7 on y = 0, |z| < ¢, with
u— 0 as 2?2 +y* — oo. One must also specify certain conditions at the crack
tips (%£¢, 0).

Shallow water theory: In the one-dimensional spatial case of water flow,
the velocity function u satisfies the Korteweg-de Vries equation

S +6u— =0 (13)

Euler-Bernoulli beam: For a thin beam of modest displacement, negligible
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rotary inertial, and insignificant stress across any beam section, a common
model is the Euler-Bernoulli beam equation
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where ET is the flexural rigidity (Young’s modulus x moment of inertia), p
is linear density of the beam, and f(x,t) is a distributed body force. We will
discuss this equation more as an example of applying our solution techniques
to a higher order equation.

Minimal surfaces in R?: You studied curvature in your multi-variable
calculus class. Mean curvature at a point on a surface is the average normal
curvature. A surface S C R? is minimal if and only if its mean curvature
vanishes identically.
(Meusnier, 1776): the condition on the mean curvature can be expressed by
the PDE

(1 + w2 uyy — 2uptiyugy, + (14 u))u, =0.

So a surface is minimal if and only if it can be locally represented as the
graph of the solution to this second-order quasilinear elliptic PDE.

Remark: Notice that we used subscripts in the last PDE to imply partial
derivatives. This will be a common practice in these Notes.

Digital halftoning: Halftoning involves rendering a normal continuous tone
image into an array of black-and-white dots. One of the techniques used is
to consider a backward diffusion equation

% =—-V.(M(v) Vv)

defined on the image domain, where the mobility function M(v) > 0 is of
a special kind (but makes the equation nonlinear). Here ¢ > 0 serves as
an artificial evolution parameter that is used to control the strength of the
operation. Other uses of PDEs in image studies include inpainting (e.g.
removing scratches from (digitized) chemical photo images, and identifying
edges of objects in blurred images, that is deblurring.

Flow of a thin layer of paint down a vertical wall: Let z axis increase
in the downward direction, h = h(z,t) be the paint thickness at distance x
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from the ceiling, and v = u(z,y,t) be the velocity of the fluid (paint). In
the case where u is essentially unidirectional (downward), shear force is zero
at the paint surface (Ou/dy = 0 at y = h), and the paint sticks to the wall
(u|,_, = 0), then from a conservation of mass argument the paint thickness
h satisfies

oh oh
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where ¢ is a constant that is proportional to the gravitational constant.

1.2 Additional Definitions and Terminology

Definition: the order of an equation is the order of the highest derivative
appearing in the equation (just as in the ODE case). For example, (1)-(3),
(8)-(12) are each second order, (13) is third order, (14) is fourth order, and
(4)-(7), (15) are first order.

Remark: Domains

PDEs are generally associated with some physical, biological, financial, ge-
ometric, etc. model situation, so associated with the equation is a domain
where the equation is to be specified. For example, for (3) and (14), strings
and beams are usually considered of finite length, so in these cases the ap-
propriate domain would be Q = {(x,t) : 0 < < L,t > 0}. In these cases,
in order to have a well-posed problem, it is necessary to impose boundary
conditions at x = 0 and x = L, and initial conditions at ¢ = 0.

Similarly, for Laplace’s equation (1), say in two dimensions (9?/92* = 0),
typically we would have a bounded, simply-connected (“no holes”) domain,
with a piece-wise smooth boundary. That is, there is a normal derivative
defined at every point on the boundary, except maybe at a finite number of
isolated points (e.g., a polygonal domain).

Sometimes circumstances call for considering a ‘spatially’ unbounded do-
main. For example, for (11), the “sky is the limit” on the price of an asset,
but it can not go below 0, so Q = {(S5,¢) : 0 < 5,0 < t < T = expiration time
of the contract}. For the paint problem, (15), Q@ = {(z,t) : 0 < z,0 < t}
might be sufficient. In such situations there might be an implicit condition
at infinity; that is, contract value V(.S,t) might be constrained by growth
or boundedness condition as S — oo, for example. Domains and boundary
conditions will be extensively discussed throughout the course. But keep in



mind that domains are open sets.

Remark on Classical Solutions

Most of the time in this course we will derive classical solutions, that is,
functions that are defined on the whole domain, that satisfy the initial and /or
boundary conditions, that are smooth in the sense that the function has all
the derivatives appearing in the equation (and that are continuous on the
domain and its boundary), and that the function satisfies the equation in
the domain.

There is, however, problems we will study that do not always have classi-
cal solutions (because of the physical nature of the problems). We will hint
at what is done when we get to such problems, but we will not have time to
dwell on the technicalities in this course.

Some Function Spaces

Differential equations, both partial and ordinary equations, hold on open
sets representing their domains. Derivatives of the solution appearing in
the equation are not expected to hold at boundary points. But the solution
usually is expected to be continuous in its domain right up to and including
the boundary. Thus, if we are considering Laplace’s equation, for example,

Upg T Uy = 0for 0 <o <1,0<y <2,

then we expect to have the solution be continuous for 0 <z < 1,0 <y < 2,
and have two continuous derivatives in both variables for 0 < x < 1,0 <y <
2. Also, Laplace’s equation can be viewed as an operator equation, so we
might write (;—;2 + 88—;)14 =01in 2, or Lu = 0 in €2, where L = 88—; g—;z.
Viewed this way L is a function defined on a function space. Then the domain
of L needs to be specified. Since Q C R? is an open set (it doesn’t contain
its boundary points), then its closure, Q, does; that is, Q = QU 9. For
2, we write C"(Q2) to mean the set of functions that are defined on 2 and
that have n continuous derivatives (in all variables) in . Then C°(Q2) would
mean be the set of functions that are continuous in €2, but in this case we
will write C(Q) instead of C°(Q2). Also, C*(f2) is the set of functions that
are continuously differentiable in €. Similarly, C*°(£2) will mean the set of
functions with continuous derivatives of all orders in €2. Hence, a possible
domain for the operator L given above would be C(2) U C?(€2). This is a
more modern way of viewing pdes, and it has greatly helped the theory of
pdes, but we will not get too carried away with abstraction in this course.
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1.3 Some Sample Problems with Solutions

Ezample: Notice that for any integer n, u(z,y) = sin(nz) sinh(ny) is a so-
lution to Laplace’s equation g, + uy, = 0.

Ezample: Find a function v = u(z,t) that satisfies

%:Of0r0<x<1,t>0

w(0,t) =t and u(1,t) =1 for t > 0

Solution: g—z A

= A(t) = u(z,t) = A(t)z + B(t). Now u(0,t) = t* = B(t),
and u(l,t) =1=

(t) + 2. Therefore, u(x,t) = (1 — t*)z + 12.

=l

Remark: In ODEs we obtain constants of integration (that are pure con-
stants). Not in PDEs. When integrating we obtain arbitrary functions of all
the other variables not being the variable of integration. A further example
to emphasize this is u,, = 0 defined in the z, y plane. Integrating with regard
to y gives u, = A(x); since A(+) is an arbitrary function of = at this point, it
is convenient to write u, = A’(x), where ()’ means d/dx. Then integrating
by x gives u(z,y) = A(x) + B(y), where A and B are considered arbitrary,
differentiable functions of a single variable.

1.4 Summary
Here are some short-answer quiz questions:

1. What is the definition of a partial differential equation, and what is
meant by its order?

2. What is Laplace’s equation? Poisson’s equation?

3. What is the difference between the wave equation and the telegrapher’s
equation?

4. What is the Schrodinger equation? The heat equation?

5. What is meant by u(z,y) being a harmonic function in set U C R??

6. What is C™(U)? Give an example of a function that is in C'(0,1), but
not in C1(0,1).
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7. What is meant by a function being a classical solution to a PDE?
Ezercises
1. Verify that u(z,y) = In(y/2? + y?) satisfies Laplace’s equation.

[\)
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Verify that e;—\/%zt)t satisfies the heat equation u; = Dug,.

Verify that u(z,t) = fOT\/z e=5"ds is a solution to u; = Uyy.

Verify that u(z,y) = f(z)g(y) is a solution to u u,, = u,u, for all pairs
of differentiable functions f, g of a single variable in R.

Verify that the solution u = u(x,t) of the transport equation

ou 0

=t (u) = 0,u(r,0) = f(x),

for sufficiently smooth ¢ is implicitly given by u = f(z — ¢(u)t).

Return to the Black-Scholes equation, (11), on page 6 and make the
following transformation to reduce (11) to the heat equation. First let
E be the “exercise price” and write S = Ee*. Also write t = 7/(c%/2)
and V' = Eu(x, 7). Substitute these into equation (11) and show the
equation u solves is

ou _ 9%u _ 1\0u __ . _r
5r =55+ (k—1)5% — ku, where k := Py
0 _ 1,20 ¢gob _ 0 9 _ 10 18
(Here 5 = 50757, S35 = 5, and 52 = —g55; T 52,7 -)

Now let u(x, 7) = €**~PTw(x, 7) and substitute this into the u equation
to obtain the equation for w of the form

Wy = Wyy + Aw, + Bw

where A = A(a) and B = B(a, 8). Therefore, choose the free parame-
ters a and 3 such that A = 0 and B = 0. Later we will solve equations
like w, = w,,, and by unwrapping these transformations a formula for

V(S,t) is obtained.
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